Pada kesempatan kali ini saya ingin berbagi tips cara melakukan analisis regresi data panel dengan menggunakan GRETL. Artikel ini sebenarnya masih bersifat draft, namun tetap saya publikasikan dengan pertimbangan belajar dan berbagi manfaat. Selain itu, ide yang melintas di pikiran ini kalau tidak segera dituangkan dalam bentuk tulisan, dikhawatirkan menguap begitu saja :-)
Software GRETL dapat diunduh GRATIS di sini
Software GRETL dapat diunduh GRATIS di sini
Tahapan-tahapan analisis data regresi data panel dengan menggunakan GRETL adalah sebagai berikut:
- File => Open Data => Import => Excel
- Pilih file yang akan diolah (file latihan, silahkan unduh di sini)
- "Do you want to give the data a time-series or panel interpretation?" klik Yes
- Pilih opsi Panel, lalu Forward
- Pilih Stacked time series, lalu Forward
- Number of Cross-sectional units: 4 (karena ada 4 perusahaan) dan Number of Periods: 20 (karena masing-masing perusahaan terdiri dari data 20 periode/ 20 tahun)
- Forward => Apply
A. Lakukan analisis OLS, klik Model => Ordinary Least Square
- Pilih Model => Ordinary Least Squares
- Masukkan inv pada Dependent variable
- Masukkan p dan m pada Regressors
- Klik OK
Berikut ini hasilnya
Model 1: Pooled OLS, using 80 observations
Included 4 cross-sectional units
Time-series length = 20
Dependent variable: inv
coefficient std. error t-ratio p-value
---------------------------------------------------------
const -62,1311 29,6331 -2,097 0,0393 **
p 0,110096 0,0137297 8,019 9,36e-012 ***
m 0,303393 0,0492957 6,155 3,15e-08 ***
Mean dependent var 292,9154 S.D. dependent var 284,8528
Sum squared resid 1560690 S.E. of regression 142,3682
R-squared 0,756528 Adjusted R-squared 0,750204
F(2, 77) 119,6292 P-value(F) 2,39e-24
Log-likelihood -508,6596 Akaike criterion 1023,319
Schwarz criterion 1030,465 Hannan-Quinn 1026,184
rho 0,939390 Durbin-Watson 0,210515
B. Lakukan analisis Panel (Fix), klik Model => Panel => Fix/Random Effects
Gambar 1. Specify Model
Hasilnya adalah sebagai berikut:
Model 2: Fixed-effects, using 80 observations
Included 4 cross-sectional units
Time-series length = 20
Dependent variable: inv
coefficient std. error t-ratio p-value
---------------------------------------------------------
const -72,7577 37,5490 -1,938 0,0565 *
p 0,107948 0,0175089 6,165 3,38e-08 ***
m 0,346162 0,0266645 12,98 9,27e-021 ***
Mean dependent var 292,9154 S.D. dependent var 284,8528
Sum squared resid 419462,9 S.E. of regression 75,28890
R-squared 0,934563 Adjusted R-squared 0,930141
F(5, 74) 211,3706 P-value(F) 2,47e-42
Log-likelihood -456,1032 Akaike criterion 924,2065
Schwarz criterion 938,4986 Hannan-Quinn 929,9366
rho 0,603379 Durbin-Watson 0,776889
Test for differing group intercepts -
Null hypothesis: The groups have a common intercept
Test statistic: F(3, 74) = 67,1102
with p-value = P(F(3, 74) > 67,1102) = 4,59178e-021
Model 2: Fixed-effects, using 80 observations
Included 4 cross-sectional units
Time-series length = 20
Dependent variable: inv
coefficient std. error t-ratio p-value
---------------------------------------------------------
const -72,7577 37,5490 -1,938 0,0565 *
p 0,107948 0,0175089 6,165 3,38e-08 ***
m 0,346162 0,0266645 12,98 9,27e-021 ***
Mean dependent var 292,9154 S.D. dependent var 284,8528
Sum squared resid 419462,9 S.E. of regression 75,28890
R-squared 0,934563 Adjusted R-squared 0,930141
F(5, 74) 211,3706 P-value(F) 2,47e-42
Log-likelihood -456,1032 Akaike criterion 924,2065
Schwarz criterion 938,4986 Hannan-Quinn 929,9366
rho 0,603379 Durbin-Watson 0,776889
Test for differing group intercepts -
Null hypothesis: The groups have a common intercept
Test statistic: F(3, 74) = 67,1102
with p-value = P(F(3, 74) > 67,1102) = 4,59178e-021
C. Lakukan analisis Panel (Random), klik Model => Panel => Fix/Random Effects
Gambar 2. Specify Model
Hasilnya adalah sebagai berikut:
Model 3: Random-effects (GLS), using 80 observations
Included 4 cross-sectional units
Time-series length = 20
Dependent variable: inv
coefficient std. error t-ratio p-value
---------------------------------------------------------
const -71,9420 83,9603 -0,8569 0,3942
p 0,107655 0,0168169 6,402 1,10e-08 ***
m 0,345710 0,0265451 13,02 3,75e-021 ***
Mean dependent var 292,9154 S.D. dependent var 284,8528
Sum squared resid 1578718 S.E. of regression 142,2673
Log-likelihood -509,1190 Akaike criterion 1024,238
Schwarz criterion 1031,384 Hannan-Quinn 1027,103
'Within' variance = 5668,42
'Between' variance = 23435,5
theta used for quasi-demeaning = 0,890029
Breusch-Pagan test -
Null hypothesis: Variance of the unit-specific error = 0
Asymptotic test statistic: Chi-square(1) = 379,08
with p-value = 1,97363e-084
Hausman test -
Null hypothesis: GLS estimates are consistent
Asymptotic test statistic: Chi-square(2) = 1,57245
with p-value = 0,455561
Included 4 cross-sectional units
Time-series length = 20
Dependent variable: inv
coefficient std. error t-ratio p-value
---------------------------------------------------------
const -71,9420 83,9603 -0,8569 0,3942
p 0,107655 0,0168169 6,402 1,10e-08 ***
m 0,345710 0,0265451 13,02 3,75e-021 ***
Mean dependent var 292,9154 S.D. dependent var 284,8528
Sum squared resid 1578718 S.E. of regression 142,2673
Log-likelihood -509,1190 Akaike criterion 1024,238
Schwarz criterion 1031,384 Hannan-Quinn 1027,103
'Within' variance = 5668,42
'Between' variance = 23435,5
theta used for quasi-demeaning = 0,890029
Breusch-Pagan test -
Null hypothesis: Variance of the unit-specific error = 0
Asymptotic test statistic: Chi-square(1) = 379,08
with p-value = 1,97363e-084
Hausman test -
Null hypothesis: GLS estimates are consistent
Asymptotic test statistic: Chi-square(2) = 1,57245
with p-value = 0,455561
D. Pemilihan Model Terbaik (Common Effects, Fixed Effects, Random Effects)
Inilah keunggulan GRETL dibandingkan program lain (misal EVIEWS), dari output model:
- Klik Test => Panel Diagnostic
- Hasilnya adalah sebagai berikut
Diagnostics: assuming a balanced panel with 4 cross-sectional units
observed over 20 periods
Fixed effects estimator
allows for differing intercepts by cross-sectional unit
slope standard errors in parentheses, p-values in brackets
const: -72,758 (37,549) [0,05648]
p: 0,10795 (0,017509) [0,00000]
m: 0,34616 (0,026664) [0,00000]
4 group means were subtracted from the data
Residual variance: 419463/(80 - 6) = 5668,42
Joint significance of differing group means:
F(3, 74) = 67,1102 with p-value 4,59178e-021
(A low p-value counts against the null hypothesis that the pooled OLS model
is adequate, in favor of the fixed effects alternative.)
=============================================
Artinya:
Pooled/Common Effects (CE) VS Fixed Effects (FE)
Sehingga dikarenakan nilai Prob < 0,05, maka yang terpilih adalah model FE
=============================================
Means of pooled OLS residuals for cross-sectional units:
unit 1: -169,54
unit 2: -2,4891
unit 3: 165,73
unit 4: 6,2993
Breusch-Pagan test statistic:
LM = 379,08 with p-value = prob(chi-square(1) > 379,08) = 1,97363e-084
(A low p-value counts against the null hypothesis that the pooled OLS model
is adequate, in favor of the random effects alternative.)
=============================================
Artinya:
Pooled/Common Effects (CE) VS Random Effects (RE)
Sehingga dikarenakan nilai Prob < 0,05, maka yang terpilih adalah model RE
=============================================
Variance estimators:
between = 23435,5
within = 5668,42
theta used for quasi-demeaning = 0,890029
Random effects estimator
allows for a unit-specific component to the error term
(standard errors in parentheses, p-values in brackets)
const: -71,942 (83,96) [0,39418]
p: 0,10766 (0,016817) [0,00000]
m: 0,34571 (0,026545) [0,00000]
Hausman test statistic:
H = 1,57245 with p-value = prob(chi-square(2) > 1,57245) = 0,455561
(A low p-value counts against the null hypothesis that the random effects
model is consistent, in favor of the fixed effects model.)
=============================================
Artinya:
Random Effects (RE) VS Fixed Effects (FE)
Sehingga dikarenakan nilai Prob > 0,05, maka yang terpilih adalah model RE
=============================================
RE terpilih 2 kali dan FE terpilih 1 kali, sehingga model terbaik dalam contoh kasus ini adalah model Random Effects, dengan hasil sebagai berikut:
coefficient std. error t-ratio p-value
---------------------------------------------------------
const -71,9420 83,9603 -0,8569 0,3942
p 0,107655 0,0168169 6,402 1,10e-08 ***
m 0,345710 0,0265451 13,02 3,75e-021 ***
Mean dependent var 292,9154 S.D. dependent var 284,8528
Sum squared resid 1578718 S.E. of regression 142,2673
Log-likelihood -509,1190 Akaike criterion 1024,238
Schwarz criterion 1031,384 Hannan-Quinn 1027,103
RE terpilih 2 kali dan FE terpilih 1 kali, sehingga model terbaik dalam contoh kasus ini adalah model Random Effects, dengan hasil sebagai berikut:
coefficient std. error t-ratio p-value
---------------------------------------------------------
const -71,9420 83,9603 -0,8569 0,3942
p 0,107655 0,0168169 6,402 1,10e-08 ***
m 0,345710 0,0265451 13,02 3,75e-021 ***
Mean dependent var 292,9154 S.D. dependent var 284,8528
Sum squared resid 1578718 S.E. of regression 142,2673
Log-likelihood -509,1190 Akaike criterion 1024,238
Schwarz criterion 1031,384 Hannan-Quinn 1027,103
Demikian, semoga bermanfaat
Salam
Founder of Belajar dan Berbagi bersama Budi Setiawan
Terima kasih...ulasan yang menarik dan sangat membantu. Materi yang disampaikan sangat jelas dan mudah dipahami. terima kasih saya sangat terbantu :)
ReplyDeleteulasan sip bang
ReplyDeletemantap bank
ReplyDeletemaaf R-Square model Random effect yang mana?
ReplyDeletepada langkah awal yg mengisi number of cross sectional units dan time periods knp gretl saya tidak bisa mengisi sesuai data saya 4 dan 30 ya ? otomatis 2 : 15 atau 3 : 10
ReplyDelete